分享到:

ACM算法模板(仅供内部测试)

2018-11-21 11:34

包含C、C++多种ACM算法模板,一共有20页,保证每个算法可用,推荐在各类ACM竞赛中使用

  • 开发语言:
  • 操作系统:
  • 源码大小:49.29 KB
  • 评分:
    0.00分
    0.00分

8积分

  • 总浏览数:0
  • 总下载数:2
  • 总评论量数:0

源码介绍

源码参数

  • 开发框架及版本:无
  • 开发环境:
  • 资源分类:文档类
  • 技术领域:其它
  • 企业分类:其他行业
  • 上架日期:2018年11月19日

源码介绍

ACM算法模板 · 一些常用的算法模板-模板合集(打比赛专用)

置顶 2016年11月05日 18:00:22  阅读数:18517

版权声明:伪身已授维权骑。——郑玄居士 https://blog.csdn.net/qq_32265245/article/details/53046750

0.头文件

#define _CRT_SBCURE_NO_DEPRECATE#include <set>#include <cmath>#include <queue>#include <stack>#include <vector>#include <string>#include <cstdio>#include <cstdlib>#include <cstring>#include <iostream>#include <algorithm>#include <functional>using namespace std;const int maxn = 110;const int INF = 0x3f3f3f3f;123456789101112131415161718

经典

1.埃拉托斯特尼筛法

/*
    |埃式筛法|
    |快速筛选素数|
    |16/11/05ztx|
*/int prime[maxn];  
bool is_prime[maxn];int sieve(int n){    int p = 0;    for(int i = 0; i <= n; ++i)
        is_prime[i] = true;
    is_prime[0] = is_prime[1] = false;    for (int i = 2; i <= n; ++i){   //  注意数组大小是n
        if(is_prime[i]){
            prime[p++] = i;            for(int j = i + i; j <= n; j += i)  //  轻剪枝,j必定是i的倍数
                is_prime[j] = false;
        }
    }    return p;   //  返回素数个数}1234567891011121314151617181920212223

2.快速幂

/*
    |快速幂|
    |16/11/05ztx|
*/typedef long long LL;   //  视数据大小的情况而定LL powerMod(LL x, LL n, LL m)
{
    LL res = 1;    while (n > 0){        if  (n & 1) //  判断是否为奇数,若是则true
            res = (res * x) % m;
        x = (x * x) % m;
        n >>= 1;    //  相当于n /= 2;
    }    return res;
}123456789101112131415161718

3.大数模拟

大数加法

/*
    |大数模拟加法|
    |用string模拟|
    |16/11/05ztx, thanks to caojiji|
*/string add1(string s1, string s2)
{    if (s1 == "" && s2 == "")   return "0";    if (s1 == "")   return s2;    if (s2 == "")   return s1;    string maxx = s1, minn = s2;    if (s1.length() < s2.length()){
        maxx = s2;
        minn = s1;
    }    int a = maxx.length() - 1, b = minn.length() - 1;    for (int i = b; i >= 0; --i){
        maxx[a--] += minn[i] - '0'; //  a一直在减 , 额外还要减个'0'
    }    for (int i = maxx.length()-1; i > 0;--i){        if (maxx[i] > '9'){
            maxx[i] -= 10;//注意这个是减10
            maxx[i - 1]++;
        }
    }    if (maxx[0] > '9'){
        maxx[0] -= 10;
        maxx = '1' + maxx;
    }    return maxx;
}1234567891011121314151617181920212223242526272829303132

大数阶乘

/*
    |大数模拟阶乘|
    |用数组模拟|
    |16/12/02ztx|
*/#include <iostream>#include <cstdio>using namespace std;typedef long long LL;const int maxn = 100010;int num[maxn], len;/*
    在mult函数中,形参部分:len每次调用函数都会发生改变,n表示每次要乘以的数,最终返回的是结果的长度
    tip: 阶乘都是先求之前的(n-1)!来求n!
    初始化Init函数很重要,不要落下
*/void Init() {
    len = 1;
    num[0] = 1;
}int mult(int num[], int len, int n) {
    LL tmp = 0;    for(LL i = 0; i < len; ++i) {
         tmp = tmp + num[i] * n;    //从最低位开始,等号左边的tmp表示当前位,右边的tmp表示进位(之前进的位)
         num[i] = tmp % 10; //  保存在对应的数组位置,即去掉进位后的一位数
         tmp = tmp / 10;    //  取整用于再次循环,与n和下一个位置的乘积相加
    }    while(tmp) {    //  之后的进位处理
         num[len++] = tmp % 10;
         tmp = tmp / 10;
    }    return len;
}int main() {
    Init();    int n;
    n = 1977; // 求的阶乘数
    for(int i = 2; i <= n; ++i) {
        len = mult(num, len, i);
    }    for(int i = len - 1; i >= 0; --i)        printf("%d",num[i]);    //  从最高位依次输出,数据比较多采用printf输出
    printf("\n");    return 0;
}12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455

4.GCD

/*
    |辗转相除法|
    |欧几里得算法|
    |求最大公约数|
    |16/11/05ztx|
*/int gcd(int big, int small)
{    if (small > big) swap(big, small);    int temp;    while (small != 0){ //  辗转相除法
        if (small > big) swap(big, small);
        temp = big % small;
        big = small;
        small = temp;
    }    return(big);
}12345678910111213141516171819

5.LCM

/*
    |辗转相除法|
    |欧几里得算法|
    |求最小公倍数|
    |16/11/05ztx|
*/int gcd(int big, int small)
{    if (small > big) swap(big, small);    int temp;    while (small != 0){ //  辗转相除法
        if (small > big) swap(big, small);
        temp = big % small;
        big = small;
        small = temp;
    }    return(big);
}12345678910111213141516171819

6.全排列

/*
    |求1到n的全排列, 有条件|
    |16/11/05ztx, thanks to wangqiqi|
*/void Pern(int list[], int k, int n) {   //  k表示前k个数不动仅移动后面n-k位数
    if (k == n - 1) {        for (int i = 0; i < n; i++) {            printf("%d", list[i]);
        }        printf("\n");
    }else {        for (int i = k; i < n; i++) {   //  输出的是满足移动条件所有全排列
            swap(list[k], list[i]);
            Pern(list, k + 1, n);
            swap(list[k], list[i]);
        }
    }
}12345678910111213141516171819

7.二分搜索

/*
    |二分搜索|
    |要求:先排序|
    |16/11/05ztx, thanks to wangxiaocai|
*/

//  left为最开始元素, right是末尾元素的下一个数,x是要找的数
int bsearch(int *A, int left, int right, int x){
    int m;
    while (left < right){
        m = left + (right - left) / 2;
        if (A[m] >= x)  right = m;   else left = m + 1;            // 如果要替换为 upper_bound, 改为:if (A[m] <= v) x = m+1; else y = m;     
    }    return left;}

/*
    最后left == right  

    如果没有找到135577找6,返回7  

    如果找有多少的x,可以用lower_bound查找一遍,upper_bound查找一遍,下标相减  

    C++自带的lower_bound(a,a+n,x)返回数组中最后一个x的下一个数的地址 

    upper_bound(a,a+n,x)返回数组中第一个x的地址

    如果a+n内没有找到x或x的下一个地址,返回a+n的地址  

    lower_bound(a,a+n,x)-upper_bound(a,a+n,x)返回数组中x的个数
*/ 1234567891011121314151617181920212223242526272829303132

数据结构

并查集

8.并查集

/*
    |合并节点操作|
    |16/11/05ztx, thanks to chaixiaojun|
*/int father[maxn];   //  储存i的father父节点  void makeSet() {  
    for (int i = 0; i < maxn; i++)   
        father[i] = i;  
}  

int findRoot(int x) {   //  迭代找根节点
    int root = x; // 根节点  
    while (root != father[root]) { // 寻找根节点  
        root = father[root];  
    }  
    while (x != root) {  
        int tmp = father[x];  
        father[x] = root; // 根节点赋值  
        x = tmp;  
    }  
    return root;  
}  

void Union(int x, int y) {  //  将x所在的集合和y所在的集合整合起来形成一个集合。  
    int a, b;  
    a = findRoot(x);  
    b = findRoot(y);  
    father[a] = b;  // y连在x的根节点上   或father[b] = a为x连在y的根节点上;  }  

/*
    在findRoot(x)中:
    路径压缩 迭代 最优版
    关键在于在路径上的每个节点都可以直接连接到根上
*/12345678910111213141516171819202122232425262728293031323334353637

图论

MST

最小生成树

Kruskal

9.克鲁斯卡尔算法

/*
    |Kruskal算法|
    |适用于 稀疏图 求最小生成树|
    |16/11/05ztx thanks to wangqiqi|
*//*
    第一步:点、边、加入vector,把所有边按从小到大排序
    第二步:并查集部分 + 下面的code
*/void Kruskal() {    
    ans = 0;    
    for (int i = 0; i<len; i++) {    
        if (Find(edge[i].a) != Find(edge[i].b)) {    
            Union(edge[i].a, edge[i].b);    
            ans += edge[i].len;    
        }    
    }    
}    1234567891011121314151617181920

Prim

10.普里姆算法

/*
    |Prim算法|
    |适用于 稠密图 求最小生成树|
    |堆优化版,时间复杂度:O(elgn)|
    |16/11/05ztx, thanks to chaixiaojun|
*/struct node {  
    int v, len;  
    node(int v = 0, int len = 0) :v(v), len(len) {}  
    bool operator < (const node &a)const {  // 加入队列的元素自动按距离从小到大排序  
        return len> a.len;  
    }  
};vector<node> G[maxn];int vis[maxn];int dis[maxn];void init() {  
    for (int i = 0; i<maxn; i++) {  
        G[i].clear();  
        dis[i] = INF;  
        vis[i] = false;  
    }  
}  
int Prim(int s) {  
    priority_queue<node>Q; // 定义优先队列  
    int ans = 0;  
    Q.push(node(s,0));  // 起点加入队列  
    while (!Q.empty()) {   
        node now = Q.top(); Q.pop();  // 取出距离最小的点  
        int v = now.v;  
        if (vis[v]) continue;  // 同一个节点,可能会推入2次或2次以上队列,这样第一个被标记后,剩下的需要直接跳过。  
        vis[v] = true;  // 标记一下  
        ans += now.len;  
        for (int i = 0; i<G[v].size(); i++) {  // 开始更新  
            int v2 = G[v][i].v;  
            int len = G[v][i].len;  
            if (!vis[v2] && dis[v2] > len) {   
                dis[v2] = len;  
                Q.push(node(v2, dis[v2]));  // 更新的点加入队列并排序  
            }  
        }  
    }  
    return ans; 
}  1234567891011121314151617181920212223242526272829303132333435363738394041424344454647

Bellman-Ford

单源最短路

Dijkstra

11.迪杰斯特拉算法

/*
    |Dijkstra算法|
    |适用于边权为正的有向图或者无向图|
    |求从单个源点出发,到所有节点的最短路|
    |优化版:时间复杂度 O(elbn)|
    |16/11/05ztx, thanks to chaixiaojun|
*/struct node {  
    int v, len;  
    node(int v = 0, int len = 0) :v(v), len(len) {}  
    bool operator < (const node &a)const {  //  距离从小到大排序  
        return len > a.len;  
    }  
};  

vector<node>G[maxn];  
bool vis[maxn];  
int dis[maxn];void init() {  
    for (int i = 0; i<maxn; i++) {  
        G[i].clear();  
        vis[i] = false;  
        dis[i] = INF;  
    }  
}  
int dijkstra(int s, int e) {  
    priority_queue<node>Q;  
    Q.push(node(s, 0)); //  加入队列并排序  
    dis[s] = 0;  
    while (!Q.empty()) {  
        node now = Q.top();     //  取出当前最小的  
        Q.pop();  
        int v = now.v;  
        if (vis[v]) continue;   //  如果标记过了, 直接continue  
        vis[v] = true;  
        for (int i = 0; i<G[v].size(); i++) {   //  更新  
            int v2 = G[v][i].v;  
            int len = G[v][i].len;  
            if (!vis[v2] && dis[v2] > dis[v] + len) {  
                dis[v2] = dis[v] + len;  
                Q.push(node(v2, dis[v2]));  
            }  
        }  
    }  
    return dis[e];  
}  123456789101112131415161718192021222324252627282930313233343536373839404142434445464748

SPFA

12.最短路径快速算法(Shortest Path Faster Algorithm)

/*
    |SPFA算法|
    |队列优化|
    |可处理负环|
*/vector<node> G[maxn];bool inqueue[maxn];int dist[maxn];void Init()  
{  
    for(int i = 0 ; i < maxn ; ++i){  
        G[i].clear();  
        dist[i] = INF;  
    }  
}  
int SPFA(int s,int e)  
{  
    int v1,v2,weight;  
    queue<int> Q;  
    memset(inqueue,false,sizeof(inqueue)); // 标记是否在队列中  
    memset(cnt,0,sizeof(cnt)); // 加入队列的次数  
    dist[s] = 0;  
    Q.push(s); // 起点加入队列  
    inqueue[s] = true; // 标记  
    while(!Q.empty()){  
        v1 = Q.front();  
        Q.pop();  
        inqueue[v1] = false; // 取消标记  
        for(int i = 0 ; i < G[v1].size() ; ++i){ // 搜索v1的链表  
            v2 = G[v1][i].vex;  
            weight = G[v1][i].weight;  
            if(dist[v2] > dist[v1] + weight){ // 松弛操作  
                dist[v2] = dist[v1] + weight;  
                if(inqueue[v2] == false){  // 再次加入队列  
                    inqueue[v2] = true;  
                    //cnt[v2]++;  // 判负环  
                    //if(cnt[v2] > n) return -1;  
                    Q.push(v2);  
                } } }  
    }  
    return dist[e];  
}/*
    不断的将s的邻接点加入队列,取出不断的进行松弛操作,直到队列为空  

    如果一个结点被加入队列超过n-1次,那么显然图中有负环  
*/1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950

Floyd-Warshall

13.弗洛伊德算法

/*
    |Floyd算法|
    |任意点对最短路算法|
    |求图中任意两点的最短距离的算法|
*/for (int i = 0; i < n; i++) {   //  初始化为0  
    for (int j = 0; j < n; j++)  
        scanf("%lf", &dis[i][j]);  
}  
for (int k = 0; k < n; k++) {  
    for (int i = 0; i < n; i++) {  
        for (int j = 0; j < n; j++) {  
            dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);  
        }  
    }
}1234567891011121314151617

二分图

14.染色法

/*
    |交叉染色法判断二分图|
    |16/11/05ztx|
*/int bipartite(int s) {  
    int u, v;  
    queue<int>Q;  
    color[s] = 1;  
    Q.push(s);  
    while (!Q.empty()) {  
        u = Q.front();  
        Q.pop();  
        for (int i = 0; i < G[u].size(); i++) {  
            v = G[u][i];  
            if (color[v] == 0) {  
                color[v] = -color[u];  
                Q.push(v);  
            }  
            else if (color[v] == color[u])  
                return 0;  
        }  
    }  
    return 1;  
}  12345678910111213141516171819202122232425

15..匈牙利算法

/*
    |求解最大匹配问题|
    |递归实现|
    |16/11/05ztx|
*/vector<int>G[maxn];  
bool inpath[maxn];  //  标记  int match[maxn];    //  记录匹配对象  void init()  
{  
    memset(match, -1, sizeof(match));  
    for (int i = 0; i < maxn; ++i) {  
        G[i].clear();  
    }  
}  
bool findpath(int k) {  
    for (int i = 0; i < G[k].size(); ++i) {  
        int v = G[k][i];  
        if (!inpath[v]) {  
            inpath[v] = true;  
            if (match[v] == -1 || findpath(match[v])) { // 递归  
                match[v] = k; // 即匹配对象是“k妹子”的  
                return true;  
            }  
        }  
    }  
    return false;  
}  

void hungary() {  
    int cnt = 0;  
    for (int i = 1; i <= m; i++) {  // m为需要匹配的“妹子”数  
        memset(inpath, false, sizeof(inpath)); // 每次都要初始化  
        if (findpath(i)) cnt++;  
    }  
    cout << cnt << endl;  
}  1234567891011121314151617181920212223242526272829303132333435363738
/*
    |求解最大匹配问题|
    |dfs实现|
    |16/11/05ztx|
*/int v1, v2;  
bool Map[501][501];  
bool visit[501];  
int link[501];  
int result;  

bool dfs(int x)  {  
    for (int y = 1; y <= v2; ++y)  {  
        if (Map[x][y] && !visit[y])  {  
            visit[y] = true;  
            if (link[y] == 0 || dfs(link[y]))  {  
                link[y] = x;  
                return true;  
            } } }  
    return false;  
}  


void Search()  {  
    for (int x = 1; x <= v1; x++)  {  
        memset(visit,false,sizeof(visit));  
        if (dfs(x))  
            result++;  
    }
}12345678910111213141516171819202122232425262728293031

动态规划

背包

16.17.18背包问题

/*
    |01背包|
    |完全背包|
    |多重背包|
    |16/11/05ztx|
*///  01背包:  void bag01(int cost,int weight)  {  
    for(i = v; i >= cost; --i)  
    dp[i] = max(dp[i], dp[i-cost]+weight);  
}  

//  完全背包:  void complete(int cost, int weight)  {  
    for(i = cost ; i <= v; ++i)  
    dp[i] = max(dp[i], dp[i - cost] + weight);  
}  

//  多重背包:  void multiply(int cost, int weight, int amount)  {  
    if(cost * amount >= v)  
        complete(cost, weight);  
    else{  
        k = 1;  
        while (k < amount){  
            bag01(k * cost, k * weight);  
            amount -= k;  
            k += k;  
        }  
        bag01(cost * amount, weight * amount);  
    }  
}  


// otherint dp[1000000];int c[55], m[110];int sum;void CompletePack(int c) {    for (int v = c; v <= sum / 2; ++v){
        dp[v] = max(dp[v], dp[v - c] + c);
    }
}void ZeroOnePack(int c) {    for (int v = sum / 2; v >= c; --v) {
        dp[v] = max(dp[v], dp[v - c] + c);
    }
}void multiplePack(int c, int m) {    if (m * c > sum / 2)
        CompletePack(c);    else{        int k = 1;        while (k < m){
            ZeroOnePack(k * c);
            m -= k;
            k <<= 1;
        }        if (m != 0){
            ZeroOnePack(m * c);
        }
    }
}123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172

LIS

19.最长上升子序列

/*
    |最长上升子序列|
    |状态转移|
    |16/11/05ztx|
*//*
    状态转移dp[i] = max{ 1.dp[j] + 1 };  j<i; a[j]<a[i];
    d[i]是以i结尾的最长上升子序列
    与i之前的 每个a[j]<a[i]的 j的位置的最长上升子序列+1后的值比较
*/void solve(){   // 参考挑战程序设计入门经典;
    for(int i = 0; i < n; ++i){  
        dp[i] = 1;  
        for(int j = 0; j < i; ++j){  
            if(a[j] < a[i]){  
                dp[i] = max(dp[i], dp[j] + 1);  
            } } }
}  

/* 
    优化方法:
    dp[i]表示长度为i+1的上升子序列的最末尾元素  
    找到第一个比dp末尾大的来代替 
*/

    void solve() {  
        for (int i = 0; i < n; ++i){
            dp[i] = INF;
        }        for (int i = 0; i < n; ++i) {  
            *lower_bound(dp, dp + n, a[i]) = a[i];  //  返回一个指针  
        }  
        printf("%d\n", *lower_bound(dp, dp + n, INF) - dp;  
    }/*  
    函数lower_bound()返回一个 iterator 它指向在[first,last)标记的有序序列中可以插入value,而不会破坏容器顺序的第一个位置,而这个位置标记了一个不小于value的值。
*/12345678910111213141516171819202122232425262728293031323334353637383940

LCS

20.最长公共子序列

/*
    |求最长公共子序列|
    |递推形式|
    |16/11/05ztx|
*/void solve() {  
    for (int i = 0; i < n; ++i) {  
        for (int j = 0; j < m; ++j) {  
            if (s1[i] == s2[j]) {  
                dp[i + 1][j + 1] = dp[i][j] + 1;  
            }else {  
                dp[i + 1][j + 1] = max(dp[i][j + 1], dp[i + 1][j]);  
            } } }
}  123456789101112131415

计算几何

21.向量基本用法

/*
    |16/11/06ztx|
*/struct node {  
    double x; // 横坐标  
    double y; // 纵坐标  };  

typedef node Vector;

Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }  
Vector operator - (Point A, Point B) { return Vector(A.x - B.y, A.y - B.y); }  
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }  
Vector operator / (Vector A, double p) { return Vector(A.x / p, A.y*p); }  

double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; } // 向量点乘  double Length(Vector A) { return sqrt(Dot(A, A)); }  // 向量模长  double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }  // 向量之间夹角  double Cross(Vector A, Vector B) { // 叉积计算 公式  
    return A.x*B.y - A.y*B.x;  
}  

Vector Rotate(Vector A, double rad) // 向量旋转 公式  {  
    return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad));  
}  

Point getLineIntersection(Point P, Vector v, Point Q, Vector w) { // 两直线交点t1 t2计算公式   
    Vector u = P - Q;   
    double t = Cross(w, u) / Cross(v, w);  // 求得是横坐标  
    return P + v*t;  // 返回一个点  }  123456789101112131415161718192021222324252627282930313233

22.求多边形面积

/*
    |16/11/06ztx|
*/node G[maxn];  
int n;  

double Cross(node a, node b) { // 叉积计算  
    return a.x*b.y - a.y*b.x;  
}  


int main()  
{  
    while (scanf("%d", &n) != EOF && n) {  
        for (int i = 0; i < n; i++)   
            scanf("%lf %lf", &G[i].x, &G[i].y);  
        double sum = 0;  
        G[n].x = G[0].x;  
        G[n].y = G[0].y;  
        for (int i = 0; i < n; i++) {   
                sum += Cross(G[i], G[i + 1]);  
        }  
        // 或者  
            //for (int i = 0; i < n; i++) {  
                //sum += fun(G[i], G[(i + 1)% n]);  
            //}  
        sum = sum / 2.0;  
        printf("%.1f\n", sum);  
    }  
    system("pause");  
    return 0;  
}123456789101112131415161718192021222324252627282930313233

23..判断线段相交

/*
    |16/11/06ztx|
*/node P[35][105];     double Cross_Prouct(node A,node B,node C) {     //  计算BA叉乘CA     
    return (B.x-A.x)*(C.y-A.y)-(B.y-A.y)*(C.x-A.x);      }      
bool Intersect(node A,node B,node C,node D)  {  //  通过叉乘判断线段是否相交;           
    if(min(A.x,B.x)<=max(C.x,D.x)&&         //  快速排斥实验;      
       min(C.x,D.x)<=max(A.x,B.x)&&      
       min(A.y,B.y)<=max(C.y,D.y)&&      
       min(C.y,D.y)<=max(A.y,B.y)&&      
       Cross_Prouct(A,B,C)*Cross_Prouct(A,B,D)<0&&      //  跨立实验;      
       Cross_Prouct(C,D,A)*Cross_Prouct(C,D,B)<0)       //  叉乘异号表示在两侧;      
       return true;      
    else return false;      }    12345678910111213141516171819

24.求三角形外心

/*
    |16/11/06ztx|
*/Point circumcenter(const Point &a, const Point &b, const Point &c) { //返回三角形的外心        
    Point ret;  
    double a1 = b.x - a.x, b1 = b.y - a.y, c1 = (a1*a1 + b1*b1) / 2;  
    double a2 = c.x - a.x, b2 = c.y - a.y, c2 = (a2*a2 + b2*b2) / 2;  
    double d = a1*b2 - a2*b1;  
    ret.x = a.x + (c1*b2 - c2*b1) / d;  
    ret.y = a.y + (a1*c2 - a2*c1) / d;  
    return ret;  }  12345678910111213

24.极角排序

/*
    |16/11/06ztx|
*/double cross(point p1, point p2, point q1, point q2) {  // 叉积计算   
    return (q2.y - q1.y)*(p2.x - p1.x) - (q2.x - q1.x)*(p2.y - p1.y);  
}  
bool cmp(point a, point b)  {  
    point o;  
    o.x = o.y = 0;  
    return cross(o, b, o, a) < 0; // 叉积判断  }  
sort(convex + 1, convex + cnt, cmp); // 按角排序, 从小到大 12345678910111213

字符串

kmp

25.克努特-莫里斯-普拉特操作

/*
    |kmp算法|
    |字符串匹配|
    |17/1/21ztx|
*/void getnext(char str[maxn], int nextt[maxn]) {    int j = 0, k = -1;
    nextt[0] = -1;    while (j < m) {        if (k == -1 || str[j] == str[k]) {
            j++;
            k++;
            nextt[j] = k;
        }        else
            k = nextt[k];
    }
}void kmp(int a[maxn], int b[maxn]) {    
    int nextt[maxm];    
    int i = 0, j = 0;    
    getnext(b, nextt);    
    while (i < n) {    
        if (j == -1 || a[i] == b[j]) { // 母串不动,子串移动    
            j++;    
            i++;    
        }    
        else {    
            // i不需要回溯了    
            // i = i - j + 1;    
            j = nextt[j];    
        }    
        if (j == m) {    
            printf("%d\n", i - m + 1); // 母串的位置减去子串的长度+1    
            return;    
        }    
    }    
    printf("-1\n");
}    1234567891011121314151617181920212223242526272829303132333435363738394041

26.kmp扩展

/*
    |16/11/06ztx|
*/#include<iostream>    #include<cstring>    using namespace std;const int MM=100005;    

int next[MM],extand[MM];    
char S[MM],T[MM];    

void GetNext(const char *T) {    
    int len = strlen(T),a = 0;    
    next[0] = len;    
    while(a < len - 1 && T[a] == T[a + 1]) a++;    
    next[1] = a;    
    a = 1;    
    for(int k = 2; k < len; k ++) {    
        int p = a + next[a] - 1,L = next[k - a];    
        if( (k - 1) + L >= p) {    
            int j = (p - k + 1) > 0 ? (p - k + 1) : 0;    
            while(k + j < len && T[k + j] == T[j]) j++;    
            next[k] = j;    
            a = k;    
        }else next[k] = L;    
    }    
}    
void GetExtand(const char *S,const char *T) {    
    GetNext(T);    
    int slen = strlen(S),tlen = strlen(T),a = 0;    
    int MinLen = slen < tlen ? slen : tlen;    
    while(a < MinLen && S[a] == T[a]) a++;    
    extand[0] = a;     
    a = 0;    
    for(int k = 1; k < slen; k ++) {    
        int p = a + extand[a] - 1, L = next[k - a];    
        if( (k - 1) + L >= p) {    
            int j = (p - k + 1) > 0 ? (p - k + 1) : 0;    
            while(k + j < slen && j < tlen && S[k + j] == T[j]) j ++;    
            extand[k] = j;    
            a = k;    
        } else    
            extand[k] = L;    
    }    
}    
void show(const int *s,int len){    
    for(int i = 0; i < len; i ++)    
            cout << s[i] << ' ';    
    cout << endl;    
}    

int main() {    
    while(cin >> S >> T) {    
        GetExtand(S,T);    
        show(next,strlen(T));    
        show(extand,strlen(S));    
    }    
    return 0;    
}   1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162

字典树

27.字典树

/*
    |16/11/06ztx|*/struct Trie{  
    int cnt;  
    Trie *next[maxn];  
    Trie(){  
        cnt = 0;  
        memset(next,0,sizeof(next));  
    }  
};  

Trie *root;  

void Insert(char *word)  {  
    Trie *tem = root;  
    while(*word != '\0')  {  
        int x = *word - 'a';  
        if(tem->next[x] == NULL)  
            tem->next[x] = new Trie;  
        tem = tem->next[x];  
        tem->cnt++;  
        word++;  
    }  
}  

int Search(char *word)  {  
    Trie *tem = root;  
    for(int i=0;word[i]!='\0';i++)  {  
        int x = word[i]-'a';  
        if(tem->next[x] == NULL)  
            return 0;  
        tem = tem->next[x];  
    }  
    return tem->cnt;  
}  

void Delete(char *word,int t) {  
    Trie *tem = root;  
    for(int i=0;word[i]!='\0';i++)  {  
        int x = word[i]-'a';  
        tem = tem->next[x];  
        (tem->cnt)-=t;  
    }  
    for(int i=0;i<maxn;i++)  
        tem->next[i] = NULL;  
}  

int main() {  
    int n;  
    char str1[50];  
    char str2[50];  
    while(scanf("%d",&n)!=EOF)  {  
        root = new Trie;  
        while(n--)  {  
            scanf("%s %s",str1,str2);  
            if(str1[0]=='i') {
                Insert(str2); 
            }else if(str1[0] == 's')  {  
                if(Search(str2))  
                    printf("Yes\n");  
                else  
                    printf("No\n");  
            }else  {  
                int t = Search(str2);  
                if(t)  
                    Delete(str2,t);  
            } } }  
    return 0;  
}  1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071

28.AC自动机

/*
    |16/11/06ztx|*/#include<iostream>  #include<cstdio>  #include<cstring>  #include<string>  using namespace std;  

#define N 1000010  char str[N], keyword[N];  
int head, tail;  

struct node {  
    node *fail;  
    node *next[26];  
    int count;  
    node() { //init  
        fail = NULL;// 默认为空  
        count = 0;  
        for(int i = 0; i < 26; ++i)  
            next[i] = NULL;  
    }  
}*q[N];  

node *root;  

void insert(char *str)  { // 建立Trie  
    int temp, len;  
    node *p = root;  
    len = strlen(str);  
    for(int i = 0; i < len; ++i)  {  
        temp = str[i] - 'a';  
        if(p->next[temp] == NULL)  
            p->next[temp] = new node();  
        p = p->next[temp];  
    }  
    p->count++;  
}  

void build_ac() { // 初始化fail指针,BFS 数组模拟队列:   
    q[tail++] = root;  
    while(head != tail)  {  
        node *p = q[head++]; // 弹出队头  
        node *temp = NULL;  
        for(int i = 0; i < 26; ++i)  {  
            if(p->next[i] != NULL)  {  
                if(p == root) { // 第一个元素fail必指向根  
                    p->next[i]->fail = root;
                }else {  
                    temp = p->fail; // 失败指针  
                    while(temp != NULL) { // 2种情况结束:匹配为空or找到匹配 
                        if(temp->next[i] != NULL) { // 找到匹配  
                            p->next[i]->fail = temp->next[i];  
                            break;  
                        }  
                        temp = temp->fail;  
                    }  
                    if(temp == NULL) // 为空则从头匹配  
                        p->next[i]->fail = root;  
                }  
                q[tail++] = p->next[i]; // 入队  
            } } }  
}  

int query() // 扫描  
{  
    int index, len, result;  
    node *p = root; // Tire入口  
    result = 0;  
    len = strlen(str);  
    for(int i = 0; i < len; ++i)  
    {  
        index = str[i] - 'a';  
        while(p->next[index] == NULL && p != root) // 跳转失败指针  
            p = p->fail;  
        p = p->next[index];  
        if(p == NULL)  
            p = root;  
        node *temp = p; // p不动,temp计算后缀串  
        while(temp != root && temp->count != -1)   {  
            result += temp->count;  
            temp->count = -1;  
            temp = temp->fail;  
        }  
    }  
    return result;  
}  

int main() {  
    int num;  
    head= tail = 0;  
    root = new node();  
    scanf("%d", &num);  
    getchar();  
    for(int i = 0; i < num; ++i) {  
       scanf("%s",keyword);  
        insert(keyword);  
    }  
    build_ac();  
    scanf("%s", str);  
    if(query())  
        printf("YES\n");  
    else  
        printf("NO\n");  
    return 0;  
}  

/*
    假设有N个模式串,平均长度为L;文章长度为M。 建立Trie树:O(N*L) 建立fail指针:O(N*L) 模式匹配:O(M*L) 所以,总时间复杂度为:O( (N+M)*L )。*/123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114

线段树

29.线段树 
1)点更新

/*
    |16/12/07ztx|
*/struct node
{    int left, right;    int max, sum;
};

node tree[maxn << 2];int a[maxn];int n;int k = 1;int p, q;
string str;void build(int m, int l, int r)//m 是 树的标号{
    tree[m].left = l;
    tree[m].right = r;    if (l == r){
        tree[m].max = a[l];
        tree[m].sum = a[l];        return;
    }    int mid = (l + r) >> 1;
    build(m << 1, l, mid);
    build(m << 1 | 1, mid + 1, r);
    tree[m].max = max(tree[m << 1].max, tree[m << 1 | 1].max);
    tree[m].sum = tree[m << 1].sum + tree[m << 1 | 1].sum;
}void update(int m, int a, int val)//a 是 节点位置, val 是 更新的值(加减的值){    if (tree[m].left == a && tree[m].right == a){
        tree[m].max += val;
        tree[m].sum += val;        return;
    }    int mid = (tree[m].left + tree[m].right) >> 1;    if (a <= mid){
        update(m << 1, a, val);
    }    else{
        update(m << 1 | 1, a, val);
    }
    tree[m].max = max(tree[m << 1].max, tree[m << 1 | 1].max);
    tree[m].sum = tree[m << 1].sum + tree[m << 1 | 1].sum;
}int querySum(int m, int l, int r)
{    if (l == tree[m].left && r == tree[m].right){        return tree[m].sum;
    }    int mid = (tree[m].left + tree[m].right) >> 1;    if (r <= mid){        return querySum(m << 1, l, r);
    }    else if (l > mid){        return querySum(m << 1 | 1, l, r);
    }    return querySum(m << 1, l, mid) + querySum(m << 1 | 1, mid + 1, r);
}int queryMax(int m, int l, int r)
{    if (l == tree[m].left && r == tree[m].right){        return tree[m].max;
    }    int mid = (tree[m].left + tree[m].right) >> 1;    if (r <= mid){        return queryMax(m << 1, l, r);
    }    else if (l > mid){        return queryMax(m << 1 | 1, l, r);
    }    return max(queryMax(m << 1, l, mid), queryMax(m << 1 | 1, mid + 1, r));
} 

build(1,1,n);  
update(1,a,b);  
query(1,a,b);  123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384

2)区间更新

/*
    |16/11/06ztx|
*/typedef long long ll;  
const int maxn = 100010;  

int t,n,q;  
ll anssum;  

struct node{  
    ll l,r;  
    ll addv,sum;  
}tree[maxn<<2];  

void maintain(int id) {  
    if(tree[id].l >= tree[id].r)  
        return ;  
    tree[id].sum = tree[id<<1].sum + tree[id<<1|1].sum;  
}  

void pushdown(int id) {  
    if(tree[id].l >= tree[id].r)  
        return ;  
    if(tree[id].addv){  
        int tmp = tree[id].addv;  
        tree[id<<1].addv += tmp;  
        tree[id<<1|1].addv += tmp;  
        tree[id<<1].sum += (tree[id<<1].r - tree[id<<1].l + 1)*tmp;  
        tree[id<<1|1].sum += (tree[id<<1|1].r - tree[id<<1|1].l + 1)*tmp;  
        tree[id].addv = 0;  
    }  
}  

void build(int id,ll l,ll r) {  
    tree[id].l = l;  
    tree[id].r = r;  
    tree[id].addv = 0;  
    tree[id].sum = 0;  
    if(l==r)  {  
        tree[id].sum = 0;  
        return ;  
    }  
    ll mid = (l+r)>>1;  
    build(id<<1,l,mid);  
    build(id<<1|1,mid+1,r);  
    maintain(id);  
}  

void updateAdd(int id,ll l,ll r,ll val) {  
    if(tree[id].l >= l && tree[id].r <= r)  
    {  
        tree[id].addv += val;  
        tree[id].sum += (tree[id].r - tree[id].l+1)*val;  
        return ;  
    }  
    pushdown(id);  
    ll mid = (tree[id].l+tree[id].r)>>1;  
    if(l <= mid)  
        updateAdd(id<<1,l,r,val);  
    if(mid < r)  
        updateAdd(id<<1|1,l,r,val);  
    maintain(id);  
}  

void query(int id,ll l,ll r) {  
    if(tree[id].l >= l && tree[id].r <= r){  
        anssum += tree[id].sum;  
        return ;  
    }  
    pushdown(id);  
    ll mid = (tree[id].l + tree[id].r)>>1;  
    if(l <= mid)  
        query(id<<1,l,r);  
    if(mid < r)  
        query(id<<1|1,l,r);  
    maintain(id);  
}  

int main() {  
    scanf("%d",&t);  
    int kase = 0 ;  
    while(t--){  
        scanf("%d %d",&n,&q);  
        build(1,1,n);  
        int id;  
        ll x,y;  
        ll val;  
        printf("Case %d:\n",++kase);  
        while(q--){  
            scanf("%d",&id);  
            if(id==0){  
                scanf("%lld %lld %lld",&x,&y,&val);  
                updateAdd(1,x+1,y+1,val);  
            }  
            else{  
                scanf("%lld %lld",&x,&y);  
                anssum = 0;  
                query(1,x+1,y+1);  
                printf("%lld\n",anssum);  
            } } }  
    return 0;  
}  123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103

30.树状数组

/*
    |16/11/06ztx|
*/#include<iostream>#include<cstdio>#include<cstring>#include<string>#include<cmath>using namespace std;typedef long long ll;const int maxn = 50005;int a[maxn];int n;int lowbit(const int t) {    return t & (-t);
}void insert(int t, int d) {    while (t <= n){
        a[t] += d;
        t = t + lowbit(t);
    }
}

ll getSum(int t) {
    ll sum = 0;    while (t > 0){
        sum += a[t];
        t = t - lowbit(t);
    }    return sum;
}int main() {    int t, k, d;    scanf("%d", &t);
    k= 1;    while (t--){        memset(a, 0, sizeof(a));        scanf("%d", &n);        for (int i = 1; i <= n; ++i) {            scanf("%d", &d);
            insert(i, d);
        }        string str;        printf("Case %d:\n", k++);        while (cin >> str) {            if (str == "End")   break;            int x, y;            scanf("%d %d", &x, &y);            if (str == "Query")                printf("%lld\n", getSum(y) - getSum(x - 1));            else if (str == "Add")
                insert(x, y);            else if (str == "Sub")
                insert(x, -y);
        }
    }    return 0;
}12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667

其他

31.中国剩余定理(孙子定理)

/*
    |16/11/06ztx|
*/int CRT(int a[],int m[],int n)  {    
    int M = 1;    
    int ans = 0;    
    for(int i=1; i<=n; i++)    
        M *= m[i];    
    for(int i=1; i<=n; i++)  {    
        int x, y;    
        int Mi = M / m[i];    
        extend_Euclid(Mi, m[i], x, y);    
        ans = (ans + Mi * x * a[i]) % M;    
    }    
    if(ans < 0) ans += M;    
    return ans;    
}  

void extend_Euclid(int a, int b, int &x, int &y)  {  
    if(b == 0) {  
        x = 1;  
        y = 0;  
        return;  
    }  
    extend_Euclid(b, a % b, x, y);  
    int tmp = x;  
    x = y;  
    y = tmp - (a / b) * y;  
}  123456789101112131415161718192021222324252627282930
在此感谢那些在编程上给予我帮助的熟悉的同学、师长,网络另一端的朋友;没有你们的倾囊相授,这份模板不可以在一天整理完毕。谢谢阅读~


责任编辑:WALL·E

下载记录

用户名 金额 类型 日期
lihu 8 积分 2018-12-07 15:10

源码评论